10 research outputs found

    Blue Channel and Fusion for Sandstorm Image Enhancement

    Get PDF

    AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation

    Get PDF
    The hemizygous R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific gene in the brain, increases risk for late-onset Alzheimer’s disease (AD). Using transcriptomic analysis of single nuclei from brain tissues of patients with AD carrying the R47H mutation or the common variant (CV)–TREM2, we found that R47H-associated microglial subpopulations had enhanced inflammatory signatures reminiscent of previously identified disease-associated microglia (DAM) and hyperactivation of AKT, one of the signaling pathways downstream of TREM2. We established a tauopathy mouse model with heterozygous knock-in of the human TREM2 with the R47H mutation or CV and found that R47H induced and exacerbated TAU-mediated spatial memory deficits in female mice. Single-cell transcriptomic analysis of microglia from these mice also revealed transcriptomic changes induced by R47H that had substantial overlaps with R47H microglia in human AD brains, including robust increases in proinflammatory cytokines, activation of AKT signaling, and elevation of a subset of DAM signatures. Pharmacological AKT inhibition with MK-2206 largely reversed the enhanced inflammatory signatures in primary R47H microglia treated with TAU fibrils. In R47H heterozygous tauopathy mice, MK-2206 treatment abolished a tauopathy-dependent microglial subcluster and rescued tauopathy-induced synapse loss. By uncovering disease-enhancing mechanisms of the R47H mutation conserved in human and mouse, our study supports inhibitors of AKT signaling as a microglial modulating strategy to treat AD

    Laser Weld-Induced Formation of Amorphous Mn–Si Precipitate in 304 Stainless Steel

    No full text
    We first report the formation of partially amorphous Mn–Si precipitates due to laser welding of face centered cubic (fcc) 304 stainless steel. Transmission electron microscopy and precession electron diffraction studies in the heat affected zone (HAZ) of the weldment indicate the formation of Mn–Si precipitates in grain interiors. Precipitates exhibit Mn–Si stoichiometry and the partially crystalline regions have a lattice constant of 0.45 nm. It is surmised that the rapid cooling rates during the laser weld melt pool solidification process may be sufficient to inhibit the complete crystallization of these precipitates

    Thermoelectric Power Generation in the Core of a Nuclear Reactor

    No full text
    Thermoelectric energy converters offer a promising solution to generate electrical power using heat in the nuclear reactor core. Despite significant improvements in thermoelectric efficiency of nanostructured materials, the performance of these advanced materials has yet to be demonstrated in the harsh radiation environment of a reactor core. Herein, we demonstrate a thermoelectric generator (TEG) made from nanostructured bulk half-Heusler (HH) materials generating stable electrical power density \u3e 1140 W/m2 after 30 days in the MIT Nuclear Research Reactor under an unprecedented fast-neutron ( \u3e 1 MeV) fluence of 1.5 Ă— 1020 n/cm2. Despite an initial degradation due to irradiation damage when operating under relatively low temperatures, our TEG showed a 20-fold increase in power output when operating under high temperature due to in-situ annealing and resulting thermoelectric property recovery. First-principles modeling indicates that a chemically disordered metallic phase was formed under irradiation at lower temperatures, resulting in a drastic degradation in thermoelectric properties, while at sufficiently high temperatures the system returned to the initial chemically ordered HH phase and the thermoelectric properties recovered. Transmission electron microscopy and electron diffraction demonstrated that the chemically disordered phase was formed upon ion irradiation, confirming the prediction from first-principles simulations. The results suggest that with proper control over the TEG operating temperatures, the nanostructured bulk TEGs could produce stable electrical power and operate indefinitely in the core of a nuclear reactor
    corecore